

Odoo testing framework

Contents:

	Unit tests
	Python Autotests
	How to run tests

	Odoo unittest

	at_install, post_install

	JS Autotests
	self.phantom_js()

	JS tests via Tours

	How js tour works in Odoo unittests

	Phantom_js + python tests

	Screenshots in PhantomJS tests

	Longpolling in unit tests

	Quality assurance tools
	Emulation of slow internet connections in browser
	Emulation of package lossing

	Emulation barcode
	Emulation via OS

	Emulation via browser

	ESC/POS printer emulation
	hw_escpos

	POS

	Paypal testing
	Create developer account

	Add seller and buyer

	Configure odoo

	Directly testing

	JS tour
	Tour Definition
	10.0+

	Open backend menu
	10.0

	11.0+

	Manual launching
	10.0+

	Auto Launch after installation

	Documentation archive
	Tour Definition
	8.0, 9.0

	Open backend menu
	8.0

	9.0

	Manual Launching
	8.0, 9.0

	Auto Launch after installation
	8.0, 9.0

 Unit tests

Unit tests

	Python Autotests
	How to run tests

	Odoo unittest

	at_install, post_install

	JS Autotests
	self.phantom_js()

	JS tests via Tours

	How js tour works in Odoo unittests

	Phantom_js + python tests

	Screenshots in PhantomJS tests

	Longpolling in unit tests

 Python Autotests

Python Autotests

To add tests you need:

	Create folder named tests

	Add __init__.py file

	Create a file whose name starts with test_ (put corresponding import to __init__.py file from the previous step)

	Add new Class based on one of test cases

	Add test methods whose names start with test_

Warning

you shall NOT import tests in module folder, i.e. do NOT add from . import tests to main __init__.py file

Example:

from odoo.tests.common import TransactionCase

class TestMessage(TransactionCase):
 at_install = True
 post_install = True

 def test_count(self):
 expected_value = self.do_something()
 actual_value = self.get_value()
 self.assertEqual(expected_value, actual_value)

 def do_something(self):

 ...

Documentation:

	How to run tests
	js tests

	Docker users

	Odoo unittest
	Test classes
	Odoo 15.0+

	Odoo 14.0-

	setUp and other methods

	Assert Methods

	at_install, post_install
	at_install

	post_install

 How to run tests

How to run tests

Use following parameters when you start odoo:

	--test-enable

	-d $DB_CONTAINER

	-i $MODULE

	--workers=0

js tests

To run tests with phantomjs tests you also need:

	Install phantomjs [http://phantomjs.org/download.html] or use dockers (see below)

	use --db-filter=.*

Docker users

You don’t need to remove docker container to run test. You can run it in a separate container

	don’t worry about name for new container – just use --rm arg

	No need to expose ports

So, to run tests with docker:

	use an odoo database which has required modules installed (otherwise it will test all dependencies too)

	OPTIONAL: stop main odoo container, but keep db container

	run new container, e.g.:

docker run --rm --link $DB_CONTAINER:db \
-v /something/at/host:/something/at/container \
itprojectsllc/install-odoo:$ODOO_BRANCH-dev \
-- \
--test-enable \
--workers=0 \
--stop-after-init
-d $DATABASE_NAME \
-i $MODULE

 Odoo unittest

Odoo unittest

	Test classes

	Odoo 15.0+

	Odoo 14.0-

	setUp and other methods

	Assert Methods

Test classes

Odoo 15.0+

Since Odoo 15 [https://github.com/odoo/odoo/pull/62031], SavepointCase is replaced with updated TransactionCase.

Complete list of the classes [https://github.com/odoo/odoo/blob/master/odoo/tests/common.py]:

class BaseCase(unittest.TestCase):
 """
 Subclass of TestCase for common OpenERP-specific code.

 This class is abstract and expects self.registry, self.cr and self.uid to be
 initialized by subclasses.
 """

class TransactionCase(BaseCase):
 """ Test class in which all test methods are run in a single transaction,
 but each test method is run in a sub-transaction managed by a savepoint.
 The transaction's cursor is always closed without committing.
 The data setup common to all methods should be done in the class method
 `setUpClass`, so that it is done once for all test methods. This is useful
 for test cases containing fast tests but with significant database setup
 common to all cases (complex in-db test data).
 After being run, each test method cleans up the record cache and the
 registry cache. However, there is no cleanup of the registry models and
 fields. If a test modifies the registry (custom models and/or fields), it
 should prepare the necessary cleanup (`self.registry.reset_changes()`).
 """
class SingleTransactionCase(BaseCase):
 """ TestCase in which all test methods are run in the same transaction,
 the transaction is started with the first test method and rolled back at
 the end of the last.
 """

class HttpCase(TransactionCase):
 """ Transactional HTTP TestCase with url_open and phantomjs helpers.
 """

Odoo 14.0-

From odoo/tests/common.py [https://github.com/odoo/odoo/blob/14.0/odoo/tests/common.py]:

class BaseCase(unittest.TestCase):
 """
 Subclass of TestCase for common OpenERP-specific code.

 This class is abstract and expects self.registry, self.cr and self.uid to be
 initialized by subclasses.
 """

class TransactionCase(BaseCase):
 """ TestCase in which each test method is run in its own transaction,
 and with its own cursor. The transaction is rolled back and the cursor
 is closed after each test.
 """

class SingleTransactionCase(BaseCase):
 """ TestCase in which all test methods are run in the same transaction,
 the transaction is started with the first test method and rolled back at
 the end of the last.
 """

class SavepointCase(SingleTransactionCase):
 """ Similar to :class:`SingleTransactionCase` in that all test methods
 are run in a single transaction *but* each test case is run inside a
 rollbacked savepoint (sub-transaction).

 Useful for test cases containing fast tests but with significant database
 setup common to all cases (complex in-db test data): :meth:`~.setUpClass`
 can be used to generate db test data once, then all test cases use the
 same data without influencing one another but without having to recreate
 the test data either.
 """

class HttpCase(TransactionCase):
 """ Transactional HTTP TestCase with url_open and phantomjs helpers.
 """

setUp and other methods

For more information see https://docs.python.org/2.7/library/unittest.html#test-cases

	setUp() – Method called to prepare the test fixture. This is called immediately before calling the test method. It’s recommended to use in TransactionCase and HttpCase classes

	setUpClass() – A class method called before tests in an individual class run. setUpClass is called with the class as the only argument and must be decorated as a classmethod(). It’s recommended to use in SingleTransactionCase and SavepointCase classes

@classmethod
def setUpClass(cls):
 ...

	tearDown(), tearDownClass – are called after test(s). Usually are not used in odoo tests

Assert Methods

Main methods [https://docs.python.org/3/library/unittest.html#assert-methods]:

	Method

	Checks that

	assertEqual(a, b)

	a == b

	assertNotEqual(a, b)

	a != b

	assertTrue(x)

	bool(x) is True

	assertFalse(x)

	bool(x) is False

	assertIs(a, b)

	a is b

	assertIsNot(a, b)

	a is not b

	assertIsNone(x)

	x is None

	assertIsNotNone(x)

	x is not None

	assertIn(a, b)

	a in b

	assertNotIn(a, b)

	a not in b

	assertIsInstance(a, b)

	isinstance(a, b)

	assertNotIsInstance(a, b)

	not isinstance(a, b)

Also, to check error raising:

with self.assertRaises(ValidationError):
 # some code that supposed to raise error
 ...

 at_install, post_install

at_install, post_install

By default, odoo runs test with paramaters:

at_install = True
post_install = False

at_install

	runs tests right after loading module’s files. It runs only in demo mode.

	runs as if other not loaded yet modules are not installed at all

	runs before marking module as installed, which also leads to not loading module’s qweb without fixing it manually [https://github.com/odoo/odoo/blob/48dafd5/addons/point_of_sale/tests/test_frontend.py#L306-L311] (don’t forget to use special environment in odoo before version 12) .

post_install

	runs after installing all modules in current installation set

	runs after calling registry.setup_models(cr)

	runs after calling model._register_hook(cr)

 JS Autotests

JS Autotests

For automatic web tests odoo uses phantomjs [http://phantomjs.org].

How to write automatic js tests:

	Follow instruction for python tests

	If you have to make several steps in UI to test something:

	Create tour

	Run tour via self.phantom_js()

	If just one step is enough:

	Run you js code via self.phantom_js()

Documentation:

	self.phantom_js()
	Example

	JS tests via Tours
	10.0+

	8.0, 9.0

	How js tour works in Odoo unittests

	Phantom_js + python tests
	Odoo 12.0+

	Odoo 11.0-

	Screenshots in PhantomJS tests

	Longpolling in unit tests

 self.phantom_js()

self.phantom_js()

From odoo/tests/common.py [https://github.com/odoo/odoo/blob/10.0/odoo/tests/common.py]:

def phantom_js(self, url_path, code, ready="window", login=None, timeout=60, **kw):
 """ Test js code running in the browser
 - optionnally log as 'login'
 - load page given by url_path
 - wait for ready object to be available
 - eval(code) inside the page
 To signal success test do:
 console.log('ok')
 To signal failure do:
 console.log('error')
 If neither are done before timeout test fails.
 """

i.e.

	odoo first loads url_path as user login (e.g. 'admin', 'demo' etc.) or as non-authed user

	then waits for ready condition, i.e. when some js variable (e.g. window) become truthy [https://developer.mozilla.org/en-US/docs/Glossary/Truthy]

	then executes js code

	then wait for one of condition:

	someone prints console.log('ok') – test passed

	someone prints console.log('error') – test failed

	timeout seconds are passed – test failed

Example

Example from mail_sent [https://github.com/it-projects-llc/mail-addons/blob/10.0/mail_sent/tests/test_js.py/]:

-*- coding: utf-8 -*-
import odoo.tests

@odoo.tests.common.at_install(False)
@odoo.tests.common.post_install(True)
class TestUi(odoo.tests.HttpCase):

 def test_01_mail_sent(self):
 # wait till page loaded and then click and wait again
 code = """
 setTimeout(function () {
 $(".mail_sent").click();
 setTimeout(function () {console.log('ok');}, 3000);
 }, 1000);
 """
 link = '/web#action=%s' % self.ref('mail.mail_channel_action_client_chat')
 self.phantom_js(link, code, "odoo.__DEBUG__.services['mail_sent.sent'].is_ready", login="demo")

In this test:

	odoo first loads /web#action=... page

	then waits for odoo.__DEBUG__.services['mail_sent.sent'].is_ready

	odoo.__DEBUG__.services['mail_sent.sent'] is similar to require('mail_sent.sent')

	is_ready is a variable in sent.js [https://github.com/it-projects-llc/mail-addons/blob/10.0/mail_sent/static/src/js/sent.js]

	then executes js code:

setTimeout(function () {
 $(".mail_sent").click();
 setTimeout(function () {console.log('ok');}, 3000);
}, 1000);

which clicks on Sent menu and gives to the page 3 seconds to load it.

This code neither throws errors (e.g. via throw new Error('Some error description') nor log console.log('error'), but you can add ones to your code to catch failed cases you need.

	then if everything is ok, odoo get message console.log('ok')

 JS tests via Tours

JS tests via Tours

How to run odoo tours in phantom_js method?

10.0+

from odoo.tests.common import HttpCase

class CLASS_NAME(HttpCase):
 def test_NAME(self):

 tour = 'TOUR_NAME'
 self.phantom_js(
 URL_PATH,

 "odoo.__DEBUG__.services['web_tour.tour']"
 ".run('%s')" % tour,

 "odoo.__DEBUG__.services['web_tour.tour']"
 ".tours['%s'].ready" % tour,

 login=LOGIN_OR_NONE
)

8.0, 9.0

class CLASS_NAME(...):
 def test_NAME(self):

 self.phantom_js(
 URL_PATH,

 "odoo.__DEBUG__.services['web.Tour']"
 ".run('TOUR_NAME', 'test')",

 "odoo.__DEBUG__.services['web.Tour']"
 ".tours.TOUR_NAME",

 login=LOGIN_OR_NONE
)

 How js tour works in Odoo unittests

How js tour works in Odoo unittests

The order is as following:

	OPEN url_path from python phantom_js method

	WAIT ready condition (Truthy or Falsy) from python phantom_js method

	OPEN url from tour’s options in js file

	WAIT wait_for (deferred object) from tour’s options in js file

	DO first step from js tour

	WAIT when trigger becomes visible

	WAIT when extra_trigger becomes visible (if extra_trigger is presented)

	EXECUTE action (run or click on trigger)

	DO NEXT step

	…

	STOP Running when:

	error happens:

	thrown via raise

	reported via console.error(...)

	reported by tour system on timeout for initial ready condition. Timeout value is 60 sec [https://github.com/odoo/odoo/blob/5aa540091f3f301960aa5a07fba2a6d009f09624/odoo/tests/common.py#L753] and it cannot be changed [https://github.com/odoo/odoo/blob/5aa540091f3f301960aa5a07fba2a6d009f09624/odoo/tests/common.py#L985].

	reported by tour system on step timeout.

	Odoo 12 and below [https://github.com/odoo/odoo/commit/fec86404e7de3b22b4945812d525d4017d254c33]: reported via console.log('error', ...)

	'test successful' is reported via console.log (in Odoo 12 and below [https://github.com/odoo/odoo/commit/fec86404e7de3b22b4945812d525d4017d254c33] it was just 'ok)

	directly by code

	indirectly by tour system when all steps are done

	timeout from python phantom_js method is occured. Default is 60 sec

 Phantom_js + python tests

Phantom_js + python tests

Odoo 12.0+

Since Odoo 12.0 [https://github.com/odoo/odoo/commit/7ea4f13f16671b4361a42d668fb81c941a552468] there is no any problem with mixing calling phantom_js and python code

Odoo 11.0-

If you need you run some python code before or after calling phantom_js you shall not use self.env and you need to create new env instead:

phantom_env = api.Environment(self.registry.test_cr, self.uid, {})

This is because HttpCase uses special cursor and using regular cursor via self.env leads to deadlocks or different values in database.

 Screenshots in PhantomJS tests

Screenshots in PhantomJS tests

Open file odoo/tests/phantomtest.js and after the line

console.log("PhantomTest.run: execution launched, waiting for console.log('ok')...");

add following

i=1;
setInterval(function(){
 self.page.render('/tmp/phantomjs-'+i+'.png');
 i++;
}, 1000);

It will create screenshot every 1 second (you can update it if needed)

 Longpolling in unit tests

Longpolling in unit tests

It’s not possible. [https://github.com/odoo/odoo/commit/673f4aa4a77161dc58e0e1bf97e8f713b1e88491]

 Quality assurance tools

Quality assurance tools

	Emulation of slow internet connections in browser
	Emulation of package lossing

	Emulation barcode
	Emulation via OS

	Emulation via browser

	ESC/POS printer emulation
	hw_escpos

	POS

	Paypal testing
	Create developer account

	Add seller and buyer

	Configure odoo

	Directly testing

 Emulation of slow internet connections in browser

Emulation of slow internet connections in browser

[image: ../_images/emulate_slow_internet.png]

Emulation of package lossing

In case if you need to emulate bad connection, i.e. it works and probably fast, but lose some percents of TCP packages, then do as following

check your network interfaces
ifconfig

Example below is for eth0
Other possbile values are
* wlan0 - wireless connection
* lo - local connection. Use this, if your run a server on your machine

lose 30 %
sudo tc qdisc add dev eth0 root netem loss 30%

"burst of losing"
Probabilyt of each next lossing depends on previous result.
For example below:
Pnext = 0.1 * Pprev + (1-0.1)* Random(0,1)
Then the package is lost, if Pnext < 0.3
sudo tc qdisc add dev eth0 root netem loss 30% 10%

show current settings
tc -s qdisc show dev eth0

reset settings
sudo tc qdisc del dev eth0 root

 Emulation barcode

Emulation barcode

Barcode scanner connected with computer work as keyboard. E.g. after scanning send sequence of symbols as if fast typing on the keyboard.

Emulation via OS

Install xdotool app if you haven’t it yet.

sudo apt-get install xdotool

Emulation scanning barcode:

sleep 3 && xdotool type 1234567890128 &

or so:

sleep 3 && xdotool type 3333333333338 &

Where: 3 - sleep seconds; 3333333333338 - barcode.

After successfully scanning you will see ‘3333333333338’ in the command line. If toggle to other window that symbols appear in the input field in the this window. So we can send sequence in the app as if we scanning it.

Emulation via browser

Open browser console (e.g. via F12 button) and type (this doesn’t work for form inputs):

odoo.__DEBUG__.services['web.core'].bus.trigger('barcode_scanned', '1234567890128', $('.web_client')[0])

 ESC/POS printer emulation

ESC/POS printer emulation

hw_escpos

	apply patch

cd /path/to/odoo/

odoo 10
curl https://raw.githubusercontent.com/itpp-labs/odoo-test-docs/master/tools/hw_escpos-patch/hw_escpos-10.patch > hw_escpos.patch

odoo 9
curl https://raw.githubusercontent.com/itpp-labs/odoo-test-docs/master/tools/master/docs/debugging/hw_escpos-patch/hw_escpos-9.patch > hw_escpos.patch

git apply hw_escpos.patch

	install hw_escpos on odoo

	run a separate odoo with following args:

-d DB_WITH_HW_ESCPOS --db-filter=DB_WITH_HW_ESCPOS --xmlrpc-port=8888 --workers=0

	in new terminal run

tail -f /tmp/printer

On printing:

	some binary data is sent to /tmp/printer

	odoo prints logs with unparsed data

POS

At any database (including one on runbot as well as database where you have installed hw_escpos):

	set Receipt printer checkbox in pos.config and set ip equal to 127.0.0.1:8888

	open POS interface

Warning

for some reason printer emulation doesn’t work in debug mode

	print ticket

 Paypal testing

Paypal testing

To test paypal payments you need to:

	Create developer account

	Add seller and buyer in developer sandbox

	Configure odoo

	Directly testing

Create developer account

Go to https://developer.paypal.com/ and create new account.

Add seller and buyer

	Go to Dashboard->Sand box->Accounts. Create business (seller) and personal (buyer) accounts. It’s recommended to don’t use non-ascii symbols in account information (address, name etc.)

	Add some money to buyer (type amount in according field).

	Go to http://sandbox.paypal.com and login as seller. May be you will be forced to apply unconfirmed ssl certificate.

	Follow odoo docs: https://www.odoo.com/documentation/user/14.0/general/payment_acquirers/paypal.html

Configure odoo

	Install payment_paypal module

	Go to Settings->Payments->Payments->Paypal.

	Pres Edit.

	Enter here Paypal Email ID - it is seller account.

	Follow odoo docs: https://www.odoo.com/documentation/user/14.0/general/payment_acquirers/paypal.html

Directly testing

Open web shop. Buy some goods and pay with paypal. When you will be redirected on paypal page use buyer login and password.

 JS tour

JS tour

Tour is a set of steps of possible scenario of module usage.

Steps may be executed automatically for testing purpose or by user for demostrating purpose.

	Tour Definition

	10.0+

	Example

	Options

	Step

	Predefined steps

	More documentation

	Open backend menu

	10.0

	Manifest

	load_xmlid

	Tour

	11.0+

	Manual launching

	10.0+

	Auto Launch after installation

Tour Definition

10.0+

Example

Example from website_sale [https://github.com/odoo/odoo/blob/10.0/addons/website_sale/static/src/js/website_sale_tour_buy.js] module:

odoo.define('website_sale.tour', function (require) {
'use strict';

var tour = require("web_tour.tour");
var base = require("web_editor.base");

var options = {
 test: true,
 url: '/shop',
 wait_for: base.ready()
};

var tour_name = 'shop_buy_product';
tour.register(tour_name, options,
 [
 {
 content: "search ipod",
 trigger: 'form input[name="search"]',
 run: "text ipod",
 },
 {
 content: "search ipod",
 trigger: 'form:has(input[name="search"]) .oe_search_button',
 },
 {
 content: "select ipod",
 trigger: '.oe_product_cart a:contains("iPod")',
 },
 {
 content: "select ipod 32GB",
 extra_trigger: '#product_detail',
 trigger: 'label:contains(32 GB) input',
 },
 {
 content: "click on add to cart",
 extra_trigger: 'label:contains(32 GB) input:propChecked',
 trigger: '#product_detail form[action^="/shop/cart/update"] .btn',
 },
 /* ... */
]
);

});

Options

Options (second argument of tour.register):

	test – only for tests

	url – open link before running the tour

	wait_for – wait for deffered object before running the script

	skip_enabled – adds Skip button in tips

Step

Each step may have following attrubutes:

	content – name or title of the step

	trigger (mandatory) – where to place tip. In js tests: where to click

	extra_trigger – when this becomes visible, the tip is appeared. In js tests: when to click

	timeout – max time to wait for conditions

	position – how to show tip (left, rigth, top, bottom), default right

	width – width in px of the tip when opened, default 270

	edition – specify to execute in “community” or in “enterprise” only. By default empty – execute at any edition.

	run – what to do when tour runs automatically (e.g. in tests)

	'text SOMETEXT' – writes value in trigger element

	'click'

	'drag_and_drop TO_SELECTOR'

	'auto' – auto action (click or text)

	function: (actions) { ... } – actions is instance of RunningTourActionHelper – see tour_manager.js [https://github.com/odoo/odoo/blob/10.0/addons/web_tour/static/src/js/tour_manager.js] for its methods.

	auto – step is skipped in non-auto running

Predefined steps

	tour.STEPS.MENU_MORE – clicks on menu More in backend when visible

	tour.STEPS.TOGGLE_APPSWITCHER – nagivate to Apps page when running in enterprise

	tour.STEPS.WEBSITE_NEW_PAGE – clicks create new page button in frontend

More documentation

	https://www.odoo.com/slides/slide/the-new-way-to-develop-automated-tests-beautiful-tours-440

	https://github.com/odoo/odoo/blob/10.0/addons/web_tour/static/src/js/tour_manager.js

	https://github.com/odoo/odoo/blob/10.0/addons/web_tour/static/src/js/tip.js

Open backend menu

10.0

Some additional actions are required to work with backend menus in tours

Manifest

Add web_tour to dependencies

"depends": [
 "web_tour",
],
...
"demo": [
 "views/assets_demo.xml",
 "views/tour_views.xml",
],

load_xmlid

You need to set load_xmlid for each menu you need to open. Recommended
name for the file is tour_views.xml

<?xml version="1.0" encoding="utf-8"?>
<odoo>
 <!-- Make the xmlid of menus required by the tour available in webclient -->
 <record id="base.menu_administration" model="ir.ui.menu">
 <field name="load_xmlid" eval="True"/>
 </record>
</odoo>

Tour

Use trigger selector for both editions:

{
 trigger: '.o_app[data-menu-xmlid="base.menu_administration"], .oe_menu_toggler[data-menu-xmlid="base.menu_administration"]',
 content: _t("Configuration options are available in the Settings app."),
 position: "bottom"
}

11.0+

No additional actions are required. [https://github.com/odoo/odoo/commit/7e008469e4e5afe9b4c7151a4738240462359f98]

Manual launching

10.0+

	activate developer mode [https://odoo-development.readthedocs.io/en/latest/odoo/usage/debug-mode.html].

	Click Bug icon (between chat icon and Username at top right-hand corner)

	click Start tour

	Click Play button – it starts tour in auto mode

To run test-only tours (or to run tours in auto mode but with some delay) do as following:

	open browser console (F12 in Chrome)

	Type in console:

odoo.__DEBUG__.services['web_tour.tour'].run('TOUR_NAME', 1000); // 1000 is delay in ms before auto action

Auto Launch after installation

Note

The section archived and now is available here.

 Documentation archive

Documentation archive

Information contained in this section covers Odoo 8 & 9 .

	Tour Definition
	8.0, 9.0
	Example

	Tour.register

	Step

	More documentation

	Open backend menu
	8.0

	9.0
	Manifest

	load_xmlid

	Tour

	Manual Launching
	8.0, 9.0

	Auto Launch after installation
	8.0, 9.0

Note

The later versions and all updates are available here.

 Tour Definition

Tour Definition

8.0, 9.0

Example

{
 id: 'mails_count_tour',
 name: _t("Mails count Tour"),
 mode: 'test',
 path: '/web#id=3&model=res.partner',
 steps: [
 {
 title: _t("Mails count tutorial"),
 content: _t("Let's see how mails count work."),
 popover: { next: _t("Start Tutorial"), end: _t("Skip") },
 },
 {
 title: _t("New fields"),
 content: _t("Here is new fields with mails counters. Press one of it."),
 element: '.mails_to',
 },
 {
 waitNot: '.mails_to:visible',
 title: _t("Send message from here"),
 placement: 'left',
 content: _t("Now you can see corresponding mails. You can send mail to this partner right from here. Press 'Send a mesage'."),
 element: '.oe_mail_wall .oe_msg.oe_msg_composer_compact>div>.oe_compose_post',
 },
]
}

Tour.register

In odoo 8 tour defines this way:

(function () {
'use strict';
var _t = openerp._t;
openerp.Tour.register({ ...

In odoo 9 tour defines that way:

odoo.define('account.tour_bank_statement_reconciliation', function(require) {
'use strict';
var core = require('web.core');
var Tour = require('web.Tour');
var _t = core._t;
Tour.register({ ...

Important details:

	id - need to call this tour

	path - from this path tour will be started in test mode

Step

Next step occurs when all conditions are satisfied and popup window will appear near (chose position in placement) element specified in element. Element must contain css selector of corresponding node.
Conditions may be:

	waitFor - this step will not start if waitFor node absent.

	waitNot - this step will not start if waitNot node exists.

	wait - just wait some amount of milliseconds before next step.

	element - similar to waitFor, but element must be visible

	closed window - if popup window have close button it must be closed before next step.

Opened popup window (from previous step) will close automatically and new window (next step) will be shown.

Inject JS Tour file on page:

<template id="res_partner_mails_count_assets_backend" name="res_partner_mails_count_assets_backend" inherit_id="web.assets_backend">
 <xpath expr="." position="inside">
 <script src="/res_partner_mails_count/static/src/js/res_partner_mails_count_tour.js" type="text/javascript"></script>
 </xpath>
</template>

More documentation

Some docs is here (begin from 10 slide):
http://www.slideshare.net/openobject/how-to-develop-automated-tests
Also checkout here:
https://github.com/odoo/odoo/blob/9.0/addons/web/static/src/js/tour.js

 Open backend menu

Open backend menu

8.0

The only way to open menu is search by string, for example

{
 title: "go to accounting",
 element: '.oe_menu_toggler:contains("Accounting"):visible',
},

9.0

Some additional actions are required to work with backend menus in tours

Manifest

Add web_tour to dependencies

"depends": [
 "web_tour",
],
...
"demo": [
 "views/assets_demo.xml",
 "views/tour_views.xml",
],

load_xmlid

You need to set load_xmlid for each menu you need to open. Recommended
name for the file is tour_views.xml

<?xml version="1.0" encoding="utf-8"?>
<odoo>
 <!-- Make the xmlid of menus required by the tour available in webclient -->
 <record id="base.menu_administration" model="ir.ui.menu">
 <field name="load_xmlid" eval="True"/>
 </record>
</odoo>

Tour

Use trigger selector for both editions:

{
 trigger: '.o_app[data-menu-xmlid="base.menu_administration"], .oe_menu_toggler[data-menu-xmlid="base.menu_administration"]',
 content: _t("Configuration options are available in the Settings app."),
 position: "bottom"
}

 Manual Launching

Manual Launching

8.0, 9.0

You can launch tour by url of following format:

/web#/tutorial.mails_count_tour=true

where mails_count_tour is id of your tour.

 Auto Launch after installation

Auto Launch after installation

8.0, 9.0

To run tour after module installation do next steps.

	Create ToDo

	Create Action

ToDo is some queued web actions that may call Action like this:

<record id="base.open_menu" model="ir.actions.todo">
 <field name="action_id" ref="action_website_tutorial"/>
 <field name="state">open</field>
</record>

Action is like this:

<record id="res_partner_mails_count_tutorial" model="ir.actions.act_url">
 <field name="name">res_partner_mails_count Tutorial</field>
 <field name="url">/web#id=3&model=res.partner&/#tutorial_extra.mails_count_tour=true</field>
 <field name="target">self</field>
</record>

Here tutorial_extra.**mails_count_tour** is tour id.

Use eval to compute some python code if needed:

<field name="url" eval="'/web?debug=1&res_partner_mails_count=tutorial#id='+str(ref('base.partner_root'))+'&view_type=form&model=res.partner&/#tutorial_extra.mails_count_tour=true'"/>

 Index

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Odoo testing framework

 		
 Unit tests

 		
 Python Autotests

 		
 How to run tests

 		
 Odoo unittest

 		
 at_install, post_install

 		
 JS Autotests

 		
 self.phantom_js()

 		
 JS tests via Tours

 		
 How js tour works in Odoo unittests

 		
 Phantom_js + python tests

 		
 Screenshots in PhantomJS tests

 		
 Longpolling in unit tests

 		
 Quality assurance tools

 		
 Emulation of slow internet connections in browser

 		
 Emulation of package lossing

 		
 Emulation barcode

 		
 Emulation via OS

 		
 Emulation via browser

 		
 ESC/POS printer emulation

 		
 hw_escpos

 		
 POS

 		
 Paypal testing

 		
 Create developer account

 		
 Add seller and buyer

 		
 Configure odoo

 		
 Directly testing

 		
 JS tour

 		
 Tour Definition

 		
 10.0+

 		
 Open backend menu

 		
 10.0

 		
 11.0+

 		
 Manual launching

 		
 10.0+

 		
 Auto Launch after installation

 		
 Documentation archive

 		
 Tour Definition

 		
 8.0, 9.0

 		
 Open backend menu

 		
 8.0

 		
 9.0

 		
 Manual Launching

 		
 8.0, 9.0

 		
 Auto Launch after installation

 		
 8.0, 9.0

_images/emulate_slow_internet.png
